Posts

CEMS and process gas analyser

A new approach to continuous gas monitoring

The Mamos is a high quality stationary monitoring system for the measurement of up to 6 gases as well as gas temperature, ambiant and differential pressures (Gas Flow) in a large field of applications.

Designed to optimise performance/price ratio, small in size and yet very skilful analyser, the Mamos is the field proven alternative for large, intricate Continuous Emissions Monitoring Systems, as it does not fall behind them concerning functionality, abilities, reliability and is far ahead in terms of expenses.

AquaGas Multigas CEMS

Online monitoring made easy

Fully automated and packed with exclusive features, the Mamos concept enlarges monitoring possibilities and respond to the today’s demands in terms of accuracy, reliability and flexibility. Each analyser is supplied with its own sampling system. The entire system is mounted on a wall mount plate and designed for installation in industrial settings and rough environment. It has a modular construction, and offer a large panel of add-ons to match site specific application requirements. The Mamos minimises the installation and ongoing operation cost until now required to fulfil your monitoring needs.

MAMOS-Multigas-analyser-CEMS-features

Multigas

Depending of the gas matrix and components to be analysed, the Mamos can be fitted with up to 6 different sensors. The combination of technologies (NDIR, TCD, PID, Electrochemical) and the addition of separate gas channels into the same instrument empower flexibility in multigas applications. A unique feature is to allocate a gas channel to sensible sensors. Its design ensures the cells have a limited exposure to gases and therefore extends considerably their respective life-time.

Process gas and emissions monitoring in combustion plants, boilers, syngas, biogas, waste recycling facilities and associated filtration systems are typical applications for multiple gas channels configuration.

In Biogas, the primary gas channel holds the CO2, CH4, Osensors while an additional separate gas channel is allocated to sensible Electrochemical sensors, H2S for example. The two NDIR gas channels can then be used for CO and VOCs.

MAMOS-CEMS-Flow diagram-2

The Mamos offers multiple sensor and method configurations. Here are the measuring parameter for the most common gases. For other gases or different measuring ranges (MR), please consult us.

Gas Analysis Method Range   I   Resolution Accuracy Time (T90) Conformity
O2

 

Oxygen

Electrochemical, Partial Pressure 20.95% |

 

0.01%

± 0.1% abs. or 5% rel. 45 sec ISO 12039,
CTM-030
O2

 

Oxygen

Electrochemical, Partial Pressure 25.00% |

 

0.01%

± 0.1% abs. or 5% rel. 45 sec ISO 12039,
CTM-030
O2

 

Oxygen

Electrochemical, Partial Pressure 100.00% |

 

0.01%

± 0.1% abs. or 5% rel. 45 sec ISO 12039,
CTM-030
CO

 

Carbon Monoxide

Electrochemical Sensor 4 000ppm |

 

1ppm

± 5ppm abs. or 5% rel. 45 sec ISO 12039,
CTM-030
CO

 

Carbon Monoxide

Electrochemical, with H2 compensation 4 000ppm |

 

1ppm

± 5ppm abs. or 5% rel. 45 sec ISO 12039,
CTM-030
CO

 

Carbon Monoxide

Electrochemical Sensor 20 000ppm |

 

1ppm

± 5ppm abs. or 5% rel. 45 sec ISO 12039,
CTM-030
CO

 

Carbon Monoxide

Electrochemical, with H2 compensation 20 000ppm |

 

1ppm

± 5ppm abs. or 5% rel. 45 sec ISO 12039,
CTM-030
CO

 

Carbon Monoxide

Electrochemical Sensor 10% |

 

0.001%

± 0.005% abs. or 5% rel. 45 sec ISO 12039,
CTM-030
CO

 

Carbon Monoxide

NDIR

 

Non Dispersive Infra Red

10% |

 

0.01%

± 0.05% abs. or 5% rel. 45 sec EN 15058 and

 

Method 10

CO

 

Carbon Monoxide

NDIR

 

Non Dispersive Infra Red

25% |

 

0.01%

± 0.05% abs. or 5% rel. 45 sec EN 15058 and

 

Method 10

CO

 

Carbon Monoxide

NDIR

 

Non Dispersive Infra Red

50% |

 

0.01%

± 0.05% abs. or 5% rel. 45 sec EN 15058 and

 

Method 10

CO

 

Carbon Monoxide

NDIR

 

Non Dispersive Infra Red

100% |

 

0.1%

± 0.5% abs. or 5% rel. 45 sec EN 15058 and

 

Method 10

CO2

 

Carbon Dioxide

NDIR

 

Non Dispersive Infra Red

5% |

 

0.01%

± 0.05% abs. or 5% rel. 45 sec ISO 12039,

 

OTM-13

CO2

 

Carbon Dioxide

NDIR

 

Non Dispersive Infra Red

10% |

 

0.01%

± 0.05% abs. or 5% rel. 45 sec ISO 12039,

 

OTM-13

CO2

 

Carbon Dioxide

NDIR

 

Non Dispersive Infra Red

25% |

 

0.01%

± 0.05% abs. or 5% rel. 45 sec ISO 12039,

 

OTM-13

CO2

 

Carbon Dioxide

NDIR

 

Non Dispersive Infra Red

50% |

 

0.01%

± 0.05% abs. or 5% rel. 45 sec ISO 12039,

 

OTM-13

CO2

 

Carbon Dioxide

NDIR

 

Non Dispersive Infra Red

100% |

 

0.1%

± 0.5% abs. or 5% rel. 45 sec ISO 12039,

 

OTM-13

CxHy

 

Total Hydrocarbons

NDIR

 

Non Dispersive Infra Red

1% |

 

0.01%

± 0.05% abs. or 5% rel. 45 sec  
CxHy

 

Total Hydrocarbons

NDIR

 

Non Dispersive Infra Red

5% |

 

0.01%

± 0.05% abs. or 5% rel. 45 sec  
CxHy

 

Total Hydrocarbons

NDIR

 

Non Dispersive Infra Red

10% |

 

0.01%

± 0.05% abs. or 5% rel. 45 sec  
CxHy

 

Total Hydrocarbons

NDIR

 

Non Dispersive Infra Red

25% |

 

0.01%

± 0.05% abs. or 5% rel. 45 sec  
CxHy

 

Total Hydrocarbons

NDIR

 

Non Dispersive Infra Red

50% |

 

0.01%

± 0.05% abs. or 5% rel. 45 sec  
CxHy

 

Total Hydrocarbons

NDIR

 

Non Dispersive Infra Red

100% |

 

0.1%

± 0.5% abs. or 5% rel. 45 sec  
NO

 

Nitric Oxide

Electrochemical Sensor 1 000ppm |

 

1ppm

± 5ppm abs. or 5% rel. 45 sec CTM-022
NO

 

Nitric Oxide

Electrochemical Sensor 5 000ppm |

 

1ppm

± 5ppm abs. or 5% rel. 45 sec CTM-022
NO2

 

Nitrogen Dioxide

Electrochemical Sensor 1 000ppm |

 

1ppm

± 5ppm abs. or 5% rel. 60 sec CTM-022
NO2

 

Nitrogen Dioxide

Electrochemical Sensor 4 000ppm |

 

1ppm

± 5ppm abs. or 5% rel. 60 sec CTM-022
SO2

 

Sulphur Dioxide

Electrochemical Sensor 2 000ppm |

 

1ppm

± 5ppm abs. or 5% rel. 45 sec  
SO2

 

Sulphur Dioxide

Electrochemical Sensor 5 000ppm |

 

1ppm

± 5ppm abs. or 5% rel. 45 sec  
H2S

 

Hydrogen sulfide

Electrochemical Sensor 1 000ppm |

 

1ppm

± 5ppm abs. or 5% rel. 70 sec  
H2S

 

Hydrogen sulfide

Electrochemical Sensor 10 000ppm |

 

1ppm

± 5ppm abs. or 5% rel. 45 sec  
H2

 

Hydrogen

Electrochemical Sensor 2 000ppm |

 

1ppm

± 10ppm abs. or 5% rel. 50 sec  
H2

 

Hydrogen

Electrochemical Sensor 20 000ppm |

 

1ppm

± 10ppm abs. or 5% rel. 70 sec  
H2

 

Hydrogen

TCD

 

Thermal Conductivity Detector

10% |

 

0.1%

± 0.5% abs. or 5% rel 45 sec  
H2

 

Hydrogen

TCD

 

Thermal Conductivity Detector

25% |

 

0.1%

± 0.5% abs. or 5% rel 45 sec  
H2

 

Hydrogen

TCD

 

Thermal Conductivity Detector

50% |

 

0.1%

± 0.5% abs. or 5% rel 45 sec  
H2

 

Hydrogen

TCD

 

Thermal Conductivity Detector

100% |

 

0.1%

± 0.5% abs. or 5% rel 45 sec  
N2O

 

Nitrous Oxide

NDIR

 

Non Dispersive Infra Red

2 000ppm |

 

1ppm

± 10ppm abs. or 5% rel 45 sec ISO 21258
N2O

 

Nitrous Oxide

NDIR

 

Non Dispersive Infra Red

5 000ppm |

 

1ppm

± 10ppm abs. or 5% rel 45 sec ISO 21258
CHF3

 

Fluoroform (Refrigerant R23)

NDIR

 

Non Dispersive Infra Red

2.5% |

 

0.01%

± 0.05 abs. or 5% rel. 45 sec  
CL2

 

Chlorine

Electrochemical Sensor 250ppm |

 

1ppm

± 5ppm abs. or 5% rel. 60 sec  
VOC

 

Volatile Organic Compounds

PID

 

Photo Ionization Detector

100ppm |

 

1ppm

± 5ppm abs. or 5% rel. 120 sec Method 21
VOC

 

Volatile Organic Compounds

PID

 

Photo Ionization Detector

1000ppm |

 

1ppm

± 5ppm abs. or 5% rel. 120 sec Method 21

Pleasant interface

Its powerful and pleasant PC interface provides operators and system integrators with a broad range of settings to adjust many aspects of the measurement tasks such as automated sampling, calibration, purge sequences, analogue outputs behaviour, data presentations…

For large sites with complex monitoring requirements, the LAN and ModBus interfaces allow implementing in an efficient way large instruments networks with master/slave configurations and user settable monitoring functions.

MAMOS-CEMS-interface

Optimised integration

This compact system is delivered ready for installation. Thanks to its small size, the system is easy to locate,  install and set-up. The routing of the cables and tubes to the instrument is simplified with all gas and electrical connections grouped onto a single plate.

MAMOS-CEMS-Connector panel MAMOS-CEMS-Connector panel-2

Advanced Features

  • Miniature and field replaceable technology
  • Standard configuration includes 6 sensors (NDIR, TCD, PID or Electrochemical)
  • Measured gases: O2, CO, CO2, CxHy, NO, NO2, SO2, H2S, H2, N2O, Cl2, VOC
  • Built-in real-time calculations for the following process parameters:

Variable Method Range   I   Resolution Accuracy Response Time (T90)
Tgas

 

Gas temperature

K-type thermocouple -50 ÷ 1000°C |

 

0.1°C

± 2°C 10 sec
Tgas

 

Gas temperature

S-type thermocouple -50 ÷ 1000°C |

 

0.1°C

± 2°C 10 sec
Tamb

 

Boiler intake air temperature

PT500 resistive sensor -50 ÷ 1000°C |

 

0.1°C

± 2°C 10 sec
DP

 

Differential Pressure

Silicon piezo-resistive pressure sensor 25hPa ÷ +25hPa |

 

1Pa (0.01hPa)

± 2Pa abs. or 5% rel. 10 sec
V

 

Gas velocity

With sampling probe equipped Pitot tube & pressure sensor 1 ÷ 50m/s |

 

0.1m/s

0.3m/s abs. or 5% rel. 10 sec
Lambda λ

 

Excess air number

Calculated 1 ÷ 10 |

 

0.01

± 5% rel. 10 sec
qA

 

Stack loss

Calculated 0 ÷ 100% |

 

0.1%

± 5% rel 10 sec
Eta η

 

Combustion Efficiency

Calculated 0 ÷ 120% |

 

0.1%

± 5% rel 10 sec
  • Large display / User friendly menu
  • Built-in gas chiller with continuous condensate removal
  • Data-logger with SD card for results collection.
  • Analogue outputs (both current and voltage) to control external devices
  • User configurable functions controlled via digital and analogue inputs
  • USB, LAN, RS485 and MODBUS

Versatile in use

The sampling system configuration can be adapted to specific monitoring needs such as multipoint monitoring, redundancy, continuous or time set measuring cycles… When sampling from wet and hot gas, moisture content, condensates and salts are continuously removed by the use of one or several gas dryer(s) (Peltier or Nafion) equipped with built-in safety filter, condensate trap and safety inline particulate filters.

Wether it uses the built-in sampling pump or the pressure from the source, the analyser is designed to work with overpressure. Single gas channel configuration can handle overpressure up 1.8 bar.

MD3 for high moisture content – Waste incinerator, Syngas, Coal Power Stations, Chemical and refinery facilities, (…)

MAMOS-CEMS-MD3-Gas-Dryer

MD2 for low and medium moisture content – Biogas, landfill, odour filtration system, LNG, (…)

Three configurations

Compact – Short-extractive CEMS – Analyser with gas dryer on a common mounting plate, all installed near the measurement place.

MAMOS-CEMS-Compact Version

Dimensions (W x H x D) 240 mm x 360 mm x 160 mm
Weight (depends on equipment) 4 kg ÷ 5 kg
Casing’s material ABS
Protection grade IP 20
Mounting plate

 

dimensions (H x W) | material | weight

596 mm x 450 mm | aluminium | 1.9 kg
Operating conditions T: 10°C ÷ 50°C, RH: 5% ÷ 90% (non-condensing)
Storing temperature 0°C ÷ 55°C
Power consumption (analyser unit only) 30 W max
Data-logger: type | size | number of results SD flash card | max 4GB | practically unlimited
Display: type | parameters Backlit LCD | 20 characters x 4 lines
Gas pump: type | max gas flow | standard gas flow Diaphragm | max 2l/min | 1.5l/min (90l/h)
Maximal extraction point pressure: Atmospheric ±200hPa
Current analogue outputs 4 outputs 0mA ÷ 20mA or 4mA ÷ 20mA
Voltage analogue outputs 4 outputs 0V ÷ 5V or 0V ÷ 10V
Digital inputs 2 inputs, TTL levels, floating = high level
Digital outputs 1 open collector output + 2 SPDT relays (optional)
Computer communication interface B type USB socket

Split /1 dryer – Cold Dry Extractive CEMS – Analyser and gas dryer are installed on separate mounting plates, each equipped with its own power supply module.  The gas dryer is installed near the sampling point therefore the analyser can be located away from the source. Once free from water vapour, the sample can be conveyed on long distances without the need for heated lines.

MAMOS-CEMS-Split Version-2

Split/2 dryers – Cold Dry Extractive CEMS – Compact configuration with an additional gas dryer installed on separate mounting plates, each equipped with its own power supply module. Two dryers in serial for high drying performances suitable for Traces monitoring in wet sample.

MAMOS-CEMS-Split Version

Twin Split – Cold Dry Multipoint CEMS – This version is based on the Twin Split/1 dryer configuration, but uses two MD3 dryer with their own power supply added on  separate mounting plates enabling measurements from two different locations (each dryer is installed near the sampling point). User programmable sampling sequences.
Mamos - Mulitplexed CEMS

Madur, state-of-the-art monitoring solutions

logo

1300 850 862

Call us with your application details handy to organise a CEMS demo at your facilities !

AquaGas is supporting the global industrial community with high performance environmental and process monitoring systems (Continuous Emissions Monitoring Systems, Air Quality Monitoring Systems, Online process analysers, Water Quality Monitoring Systems) specifically designed and built to meet your application requirements.

Suspended oil online monitoring

aquagas_logo_500px

The benefits of accurate suspended oil (oil in water) online monitoring are countless with regards to process and wastewater management, especially in the oil and gas industry. Continuous hydrocarbons monitoring enables complete environmental compliance, detailed process optimisation and reduced operating costs often by the use of a single instrument.

  • Improves systems nominal capacity
  • Ensures safe purge and filtration operations
  • Eliminates manual handling and intermittent attendances
  • Decreases oil losses and hydrocarbons released
  • Prevents bacterial contamination and equipment corrosion
  • ATEX and application specific engineered versions available
  • Maintenance Free, purge time counter and auto-stop function
  • Automated fully programmable system
  • Suitable for all type of Hydrocarbons
  • Intuitive interface through touch screen

Discharge management

OPAL-OIl Pollution Alarm - WQMS

Oil platforms, refineries and Tank farms generate produced water which requires close management. For every country in Oceania, there are regulations setting limits on the amount of hydrocarbons than can be disposed of overboard and a range of different lab techniques that can be used for reporting this amount. The OPAL and PAUTBAC II from SERES IR based analysers can provide continuous measurement of the oil concentrations in the discharge water from oil and gas processing and storage facilities.

Process optimisation


The OPAL and PAUTBAC II from SERES are respectively side stream analyser and oil tank de-watering systems based on IR light scattering. They not only can provide you with extremely accurate monitoring, but also sense for changes in the size of oil droplets and therefore in process conditions. Using the built in IR detector, the OPAL and PAUTBAC II analysers enable early detection of oil traces in all type of water, ensuring fast overview of the process conditions.
As the volume of your discharge water increases, you need a system that will meet your changing demands, work reliably and with minimal operator input required. Having provided hundreds of online monitoring systems worldwide, SERES is the best positioned to assist you along with your water management plan.

Every platform, refineries, industrial process (…) has to recover as much oil as possible, as efficiently as possible. In order to make improvements you need to understand how the current system is working. SERES Environnement manufactures the OPAL (IMO* certified) allowing real-time measurement of oil concentrations at the inlet and outlet of any separator, providing continuous on-line information about the effectiveness of your separators. The OPAL can also trigger a divert valve to route the produced water through a sand filter.

The OPAL is the last generation of detector designed for online and Real-time suspended Hydrocarbons monitoring. It uses Infra-Red scattering to enables early detection of oil in any type of water. Reagent’s free, the OPAL represents the most cost effective solution and matches a large range of application requirements.

* IMO International Maritime Organisation

Opal_Chassis_Base_120419

PAUTBAC II

The PAUTBAC II is the best suited system to automate water drainage from oil storage tank. With its capacitive probe, it is a flexible, economical and reliable system capable to handle the crucial but time consuming task of oil tank dewatering without the need for human attendance. PAUTBAC II is designed to be install online and is a fully automatic system with adjustable threshold form 5 to 25% and no tank modifications required

AQUAGAS - WQMS -PAUTBAC3

A Teflon coated capacitive probe is inserted in an explosion proof circulation chamber mounted in the tank draining pipe work. The probe measures the dielectric constant to detect the interface between oil and water. The control unit processes the probe signal to control the tank purge valve operation.

key facts about automatic dewatering systems

  • Avoid product losses
  • Reducing amount of hydrocarbons discharged on waste water / cost for waste water treatment
  • Increase tanks capacity
  • Prevents tank corrosion
  • Eliminates labour costs dues to manual operation
  • Reduce risk of personal exposures to chemicals

PAUTBAC advantages

  • Completely automatic dewatering process
  • No maintenance needed
  • No calibration needed
  • Elimination of tank penetration
  • Easy installation without having to drain tank
  • Highly sensitive and reliable

AT THE HEART OF INNOVATION

SERES environnement is continually implicated in the process of technological innovation. “We constantly re-invest in research and development in order to provide our clients with the most advanced technologies. For SERES, the notion of change is a permanent challenge. We work in partnership and collaboration with French and foreign research centres (such as the CNRS – the French National Centre for Scientific Research), Engineering Colleges and Universities.” SERES environnement makes 60% of its turnover on the export market in more than 35 countries with references in the Oil & Gas, Water treatment, Cement and Glass industry, Energy and large manufacturing companies…

SERES Environnement References

Universal gas sampling system

 

complete gas analysis equipment from one source

Sampling is a key factor to ensure representative analysis and essential to preserve the good status of your monitoring system. AquaGas Monitoring Systems introduces Ankersmid Sampling BVBA (Belgium) stationary sampling equipment designed for Continuous Emission Monitoring (CEMS) and process online analysis.

AquaGas solutions are available as system components for integration into third party systems or as complete turn-key systems. Our systems combine the best technologies available to extract, transfer, and condition samples from stack or crucial process locations prior to analysis.

ACC 400 COMPRESSOR GAS COOLER

Ankersmid Sampling Patented design offers a wide selection of modular options and combinations essential to optimise sampling performances and secure the availability rate of CEMS and process monitoring equipment.

Our adaptative product range is versatile and suits a large variety of applications including:

  • Cement Plant
  • Power Station (Coal fired, Diesel…)
  • Waste Incinerators
  • DeNOx, deSOx and other flue gas treatment process
  • Combustion and Process control
  • Syngas and biogas plant
  • Refineries…

Heated Gas Sample Probes

  • 50°C to 320°C with PID controller or 0-180°C self-limiting heating cartridges
  • High & Low temperature alarm and RS485 ModBus
  • Wide variety of filter materials, length and porosity
  • PTFE demister for wet scrubbers
  • Blowback function for higher dust load up to 10g/Nm3
  • The test gas injection port according to emissions standards (EN14181)
  • Calibration gas feeding via the filter element of the gas sample probe
  • Large selection of heated and unheated sample tubes (incl. ATEX)
  • Easy access to filter, inner stack sample tube, and top-filter
  • Efficient and fast maintenance and routine inspection tasks

Heated Lines

AHL Heatedline-v2

  • 50°C to 200°C Heated Line with PID controller
  • 0-180°C self-limiting heat trace Sample line
  • High & Low temperature alarm and RS485 ModBus
  • Large choice of options and combinations (incl. ATEX)
  • PTFE or SS316 inner tube
  • Multiple inner tubes for calibration, air and sample flows
  • No cold spot
  • Large selection of temperature sensor
  • UV rated PA12 , Polyamide braiding or highly flexible smooth silicon outer jacket
  • Maintenance free and delivered ready for installation

Gas Conditioners

  • 4°C +/-0.1°C dew point stabiliser
  • 19 inch rack  or wall mount units
  • High & Low temperature alarm and RS485 ModBus
  • Large choice of options and combinations (incl. ATEX)
  • Ankersmid Sampling patented NEO® heat exchanger design
  • Multiple stream capabilities
  • PFA® coated gas path and heat exchanger
  • ASS integrated rack mount complete stationary sampling system
  • Low maintenance and reduced operating cost
  • High-performance continuous condensate purge
  • AOX, TUV certified 99% conversion efficiency NOx converter

Gas Sampling Pumps

  • High performance PTFE gas sampling pump
  • 5 to 30 lpm flow range
  • 5 to 240°C operating temperature range
  • Designed for a large range of analytical applications (incl. ATEX)
  • Large choice of options and combinations

Speciality Filters

  • Universal all purposes filters
  • Deep acting particulate filters
  • Calibration gas humidifiers
  • Scrubbers and adsorption material
  • Liquid stop, condensate drain…
  • Built-in liquid alarm sensor, condensate purge, heater…

Ankersmid Sampling

  • Universal

    CEMS integration made easy

  • Performant

    Field proven, high quality, durable Ankersmid Sampling BVBA patented designs

  • Modular

    Comprehensive range of gas sampling equipment from one source

  • Efficient

    Easy to install, maintain and operate

AquaGas is supporting the global industrial community with high performance environmental and process monitoring systems (Continuous Emissions Monitoring Systems, Air Quality Monitoring Systems, Online process analysers, Water Quality Monitoring Systems) specifically designed and built to meet your application requirements.

Continuous IR laser spectroscopy

Applications and References

The ProCeas® and the LaserCEM® are based on the OFCEAS* measuring principle combined with a Low Pressure Sampling LPS (100 mbar absolute) developed and patented worldwide by AP2E (France), for the online analysis of several key gases in industrial, environmental and OH&S applications. It provides measurements with a very high spectral resolution in addition to an exclusive and powerful sampling method (no heated line nor treatment of samples) and an interference-free, fast and sensitive analysis, regardless of the matrix of the gas to be analysed.

 

Combustion cycle in refineries

oil-gas-industry_01

 

References: EXXON (optimising combustion in boilers), Fives PILLARD (optimisation tool for the production and the adjustment of burners for boilers).

With the environmental constraints, Oil companies are looking for optimum energy and environmental efficiency of their burners. Combined cycles boilers optimisation requires accurate simultaneous online monitoring of O2 and CO to ensure both compliance with standards and process control efficiency. The ProCeas, used to track real time the residual rate of O2 (less than 3%), ensures optimal combustion process automation. The accuracy of the measurement is a financial matter: according to the thermal performance of the burner, even a reduction of 0.1% of oxygen in excess represents millions of dollars of savings in the annual consumption of fuel.

CEMS in coal fired power station

shutterstock_132177536

Reference: IBIDEN Power Station – Simultaneous SO2/SO3 monitoring at the catalyst outlet according to the oxygen content variation have been done with the ProCeas® analyser.

SOx monitoring

SO2/SO3: AP2E also intends to enhance the approach aimed at combining environmental compliance and process optimisation, even if this seems less obvious to understand at first sight. If today SO2 is correctly measured, this does not fully reflect the sulphur emissions from combustion units subject to this requirement. In the presence of oxygen, SO2 does in effect form sulphur trioxide (SO3), a gas that is much more corrosive than SO2.

Other chemical phenomena occur, particularly in denitrification (DeNOx), which in the presence of ammonia may lead both to an over-consumption of ammonia and to filter blockages. Therefore, not measuring SO3 entails the under estimation of sulphur emissions, and also additional maintenance costs and over-consumption of reagents. To have continuous and precise knowledge of the SO2 / SO3 couple enables the operator to choose the controlling conditions for limiting the formation of SO3 and its indirect costs.

Biogas

biogas

References: SP Technical Research Institute of Sweden, Rhodia (France). VEOLIA for its Centre de Recherche Energie Environnement Déchet (CREED, Centre for research on energy, environment, and waste).

The processing of gases from biomass (biogas, bio-methane) remains a key step in industrial processes for producing various types of bio-energy, a manufacturing process that requires optimizing.

It is therefore imperative to have the ability to calculate the calorific value of these new gases and to be able to quantify the impurities present there, in order to reduce the risk of damage to facilities, to react quickly in case of malfunction, and to certify the quality of finished products. AP2E has installed several equipment units within the facilities of various players of the world of biogas around the world. The purpose is to analyse the CH4 and CO2 content, as well as the residual concentration of H2S. This is a major impurity which transforms into sulphuric acid in the presence of some moisture. It is a very corrosive acid; consequently it is destructive for the facilities and the engines that burn biogas or bio methane.

The ability to analyse in the same multiplexing equipment the H2S content (which varies according to the time of day) of the “raw biogas” at the exit of the casing serves to determine the use of this biogas and assess its composition and quality. Other compounds may also be monitored by adding specific laser sources, such as the water content, in order to control the efficiency of the condenser. AP2E is also currently studying the analysis of siloxane, another sore point for energy recovery.

Using a continuous analyser as a means of industrial control and economic optimization of production units is for the control of biogas quality. During the combined cycles of biogas generation, the absence of H2S is crucial. It is a major impurity and a source of engine breakage. However, conventional means of analysis have trouble distinguishing CH4 from H2S. Therefore, operators are forced to adopt an excessively prudent approach in the treatment stage with active carbon: it is changed even before it is totally saturated. With a continuous, accurate, and reliable analysis of the level of H2S in the exit of the adsorption bed, we can instead use it until its saturation point and reduce overall costs.

Tests conducted on a site with a valuation of 1 MW showed that the amortization of the analyser could be performed based on this single criterion of active coal consumption in less than a year. Indeed the cost of a monthly activated carbon charge is equivalent to AUD $65,000.

 

Indoor air quality

Fgas monitoring system

References: In 2010, AP2E won an important contract with the DCNS for air quality control equipment for the confined interiors of submarines (on-board crew safety).

In April 2015, European regulations included formaldehyde as a proven carcinogenic product (CMR). In 2014, the ProCeas was certified approved method by EXERA (measurement, control, and automation equipment) and the LNE (National laboratory of metrology and testing).

AP2E is already working in the confined air field (submarines) and is interested in the building sector.  This new classification impacts devices monitoring the exposure to workers or to the public of formaldehyde, Freon, Ethanol… present in the indoor air of industrial sites or sites hosting the public. The ProCeas® Formaldehyde continuously measures these changes with a minimum 10 ppm threshold (maximum 1%).

Food processing industry

The drying field is another good example of application where energy efficiency has to be kept in mind, especially when processing food powders. Water monitoring is useful for avoiding excessive energy consumption (adjust dryer load to obtain minimise the residual H2O content). Online monitoring of carbon monoxide (CO) answers safety concerns. When food powders are dehydrated, the conditions may be such that CO is generated in the dehydrator. Once conditions for generating CO are present, CO tends to increase its concentration very quickly. To keep the CO below potentially dangerous level, it is necessary to detect the first signs of CO which appear above the levels already present in the atmosphere. The ProCeas is actually in operation within ten drying towers in dry food production facilities and has been chosen as the most reliable monitoring equipment by companies leading food processing industry.

Engine emissions testing

The automobile engines sector also remains a major target. With the arrival of the new EURO VI standards since September 2014, manufacturers have been forced to measure many pollutants (NO, NO2, N2O, NH3, CO2, CH4, and ethanol).

Successful testing with ProCeas® was conducted around the world:

– NH3 at Renault and VOLVO (France)

– N2O at Volkswagen (Germany)

– NH3 at General Motors (USA)

– NH3, N2O, NO, NO2 at Sensor Inc. (USA)

In the USA with Sensors Inc. – (www.sensors-inc.com): in May 2012, AP2E signed a contract for supplying ProCeas® analysers for the real-time control of gas emissions of engine test benches in the automotive industry. Sensors Inc. is the leading American manufacturer of real-time testing equipment for gas emissions in the transportation industry. The new range of measuring instruments is marketed in the US under the name of SEMTECH LASAR and it consists of four modules (NH3, N2O, NO, and NO2), each capable of analysing three gases simultaneously.

Natural gas

To be used in the best conditions, so that it limits damage and maintenance of equipment, natural gas must be rid of impurities, especially hydrogen sulphide (H2S), which is very corrosive, and all traces of moisture. Current filtration systems run against, among other things, the problem of measuring residual traces of these impurities because no reliable continuous analysis system was available so far. Today the main players in the “Oil & Gas” market deem the ProCeas® as the most efficient natural gas analyser for continuously and simultaneously measuring traces of H2S (LoD under 50 ppb) and H2O (under 50 ppm), without interference, without any dependence vis-à-vis the constitution of the gas, and with response times under a few seconds

Pure Gas

 

The ProCeas® is used by pure gases manufacturers to control the purity of the gas along production line (N2, H2, O2…).

Syngas

References: Total, CEA Grenoble, IFP (French Petroleum Institute), GDF Suez, VEOLIA (CREED), Arkema

H2O, CO, CO2, and H2 rates

Praxair uses the ProCeas® as an online analyser of H2O, CO, CO2, and H2 rates, in a process for producing syngas from the gasification of coal, oil residue, pet coke, and biomass. This syngas is then used either as a source of energy in a heat and electricity combined cycle process or in a Fischer Tropsch process for producing second-generation bio-fuel. This process requires that the residual H2S generated by gasification have a value of less than 1 ppm to avoid the destruction of the polymerization catalysts.

CO, CO2, H2O, CH4, H2S, NH3 and H2

Midrex is a steel manufacturer that uses a gasification process similar to Praxair’s in order to cogenerate the electricity and heat needed in the manufacture of its steel. AP2E delivered to Midrex complete solutions that have enabled it on the one hand to measure the calorific value of these synthetic gases (by measuring CO, CO2, H2O, CH4, and H2) and also the presence of impurities such as H2S and NH3.

H2, H2O and Cl2

Today, the ProCeas® provides what no other infra-red laser technique could: the direct measurement of hydrogen (H2) and water (H2O) in chlorine (Cl2) without reagents or discharges, and interference-free. The ProCeas® performs measurements with a very high spectral resolution of very low concentrations (under a few ppm), with response times under a few seconds. This analyser also provides a control of the drying (H2O) in a chemical process at Arkema.

*Optical Feedback Cavity Enhanced Absorption Spectroscopy: technology developed and patented by the University Joseph Fourier (France), coupled to a Low Pressure Sampling(100 mbar absolute) developed and patented worldwide by AP2E, for the on-line analysis of different gases. By the end of 2010, after two years of R & D studies, the AP2E ProCeas®was the award recipient of the USA “R & D 100” which rewards the 100 most innovative global technologies of the year.


AquaGas is supporting the global industrial community with high performance environmental and process monitoring systems (Continuous Emissions Monitoring Systems, Air Quality Monitoring Systems, Online process analysers, Water Quality Monitoring Systems) specifically designed and built to meet your application requirements.

Total Organic Carbon (TOC)

 

aquagas_logo_500px

TOC Evolution

AquaGas introduces the TOC Evolution from SERES Environnement packed with true technical innovation empowering direct TOC online monitoring.

 

 

TRUE TOC ANALYSIS

The TOC Evolution allows accurate and complete measurement of  Total Organic Carbon featuring simultaneous and direct measurement of various TOC groups including Volatile Organic Compounds (VOC), Non-Purgeable Organic Carbons (NPOC) and Total Inorganic Carbons (TIC). In addition it is possible to complete the TOC Evolution water quality monitoring capacities by adding optional parameters Total Phosphorus (TP) and Total Nitrogen (TN) or the correlated Dissolved Organic Carbon (DOC)

 

TOC Evolution Measurement principle

 

PRINCIPLE

TOC Evolution measures the pollution load of Organic Carbons (OC) in any type of water by oxidation of the OC in CO2 allowing accurate Non Dispersive Infra Red measurement (NDIR) of the produced CO2 .

Reactor

New SERES patented high performance multifunctional reactor providing powerful and efficient oxidation. Its stripping function enables ultra-fast and optimal transfer of CO2.

Enhanced NDIR detection

Integral optical system for accurate, continuous and online IR measurement.

With a detection limit lower than 0.1 mg/l and fast analysis sequence ( less than 6 minutes), the TOC Evolution suits an unprecedented wide range of applications in the field of Water Quality Monitoring including but not limited to: industrial wastewater, process water and effluents/influents monitoring, Fresh water in water table, sources, drinking water purification and distribution processes, production of pure water such as demineralized, condensate water, steam production…
TOC online monitoring

FEATURES AND BENEFITS

Compact full stainless steel field proof enclosure

Intuitive colour touchscreen interface

Quick response time, high precision (+/- 3%) and repeatability (+/- 3%)

User programmable sampling sequences

Low maintenance and operation cost

Cost effective TRUE TOC online monitoring

Broad measuring range from 0-10mg/l to 0-5 g/l

TOC Evolution vuv - TOC online analyser

AT THE HEART OF INNOVATION

SERES environnement is continually implicated in the process of technological innovation. “We constantly re-invest in research and development in order to provide our clients with the most advanced technologies. For SERES, the notion of change is a permanent challenge. We work in partnership and collaboration with French and foreign research centres (such as the CNRS – the French National Centre for Scientific Research), Engineering Colleges and Universities.” SERES environnement makes 60% of its turnover on the export market in more than 35 countries with references in the Oil & Gas, Water treatment, Cement and Glass industry, Energy and large manufacturing companies…

SERES Environnement References